MIT: The too-smart-for-its-own-good grid

By: Larry Hardesty, MIT News Office 

In the last few years, electrical utilities have begun equipping their customers’ homes with new meters that have Internet connections and increased computational capacity. One envisioned application of these “smart meters” is to give customers real-time information about fluctuations in the price of electricity, which might encourage them to defer some energy-intensive tasks until supply is high or demand is low. Less of the energy produced from erratic renewable sources such as wind and solar would thus be wasted, and utilities would less frequently fire up backup generators, which are not only more expensive to operate but tend to be more polluting, too.

Recent work by researchers in MIT’s Laboratory for Information and Decision Systems, however, shows that this policy could backfire. If too many people set appliances to turn on, or devices to recharge, when the price of electricity crosses the same threshold, it could cause a huge spike in demand; in the worst case, that could bring down the power grid. Fortunately, in a paper presented at the last IEEE Conference on Decision and Control, the researchers also show that some relatively simple types of price controls could prevent huge swings in demand. But that stability would come at the cost of some of the efficiencies that real-time pricing is intended to provide.

Today, customers receive monthly electrical bills that indicate the cost of electricity as a three- to six-month average. In fact, however, the price that power producers charge utilities fluctuates every five minutes or so, according to market conditions. The electrical system is thus what control theorists call an open loop: Price varies according to demand, but demand doesn’t vary according to price. Smart meters could close that loop, drastically changing the dynamics of the system.

Research scientist Mardavij Roozbehani and professors Sanjoy Mitter and Munther Dahleh assumed that every consumer has a “utility function” describing how inconvenient it is for him or her to defer electricity usage. While that function will vary from person to person, individual utility functions can be pooled into a single collective function for an entire population. The researchers assumed that on average, consumers will seek to maximize the difference between the utility function and the cost of electricity: That is, they’ll try to get as much convenience for as little money as possible.

What they found was that if consumer response to price fluctuation is large enough to significantly alter patterns of energy use — and if it’s not, there’s no point in installing smart meters — then price variations well within the normal range can cause dangerous oscillations in demand. “For the system to work, supply and demand must match almost perfectly at each instant of time,” Roozbehani says. “The generators have what are called ramp constraints: They cannot ramp up their production arbitrarily fast, and they cannot ramp it down arbitrarily fast. If these oscillations become very wild, they’ll have a hard time keeping track of the demand. And that’s bad for everyone.”

The researchers’ model, however, also indicates that at least partially shielding consumers from the volatility of the market could tame those oscillations. For instance, Roozbehani explains, utilities could give consumers price updates every hour or so, instead of every five minutes. Or, he says, “if the prices in the wholesale market are varying very widely, I pass the consumer a price that reflects the wholesale market conditions but not to that extent. If the prices in the wholesale market just doubled, I don’t give the consumer a price that is double the previous time interval but a price that is slightly higher.” According to Roozbehani, the same theoretical framework that he and his colleagues adopt in their paper should enable the analysis and development of practical pricing models.

But minimizing the risks of giving consumers real-time pricing information also diminishes the benefits. “Possibly, when you need an aggressive response from the consumers — say the wind drops — you’re not going to get it,” Roozbehani says.

One way to improve that trade-off, Roozbehani explains, would be for customers to actually give utilities information about how they would respond to different prices at different times. Utilities could then tune the prices that they pass to consumers much more precisely, to maximize responsiveness to fluctuations in the market while minimizing the risk of instability. Collecting that information would be difficult, but Roozbehani’s hunch is that the benefits would outweigh the costs. He’s currently working on expanding his model so that it factors in the value of information, to see if his hunch is right.

Did You Like this Article? Get All the Energy Industry News Delivered to Your Inbox

Subscribe to an email newsletter today at no cost and receive the latest news and information.

 Subscribe Now


Maximizing Operational Excellence

In a recent survey conducted by PennEnergy Research, 70% of surveyed energy industry professional...

Leveraging the Power of Information in the Energy Industry

Information Governance is about more than compliance. It’s about using your information to drive ...

Reduce Engineering Project Complexity

Engineering document management presents unique and complex challenges. A solution based in Enter...

Revolutionizing Asset Management in the Electric Power Industry

With the arrival of the Industrial Internet of Things, data is growing and becoming more accessib...

Latest PennEnergy Jobs

PennEnergy Oil & Gas Jobs