POWER-GEN International, Renewable Energy World announce Projects of the Year!

A Look Back: The 2013 Projects of the Year Award Winners

by Sharryn Dotson, Editor, Nuclear Power International and Meg Cichon, Editor, Renewable Energy World

Each year, projects from around the world are honored for their excellence by Power Engineering and Renewable Energy World magazines. This year’s awards gala was held on Monday night at Disney’s Odyssey Pavilion at EPCOT.
Project winners this year reflect the industry’s search for cleaner, more efficient sources of power generation and demonstrate new technologies that will help achieve those goals. Project entrants came from all corners of the globe, and winners reflected a truly international representation of excellence in the industry.
To be eligible for an award, a project must have been commissioned between August 1, 2013 and July 31, 2014 and have made a significant impact on the entire energy industry. When judging the finalists, editors considered the technology that was employed in a project, as well as the project’s impact on the industry at large and the community in which it was installed.
Project winners were decided by the editors of Power Engineering and Renewable Energy World magazines.The following winners are:


Boundary Dam Integrated Carbon Capture and Storage (CCS) Project, owned by SaskPower, 110 MW in Estevan, Saskatchewan, Canada

The Boundary Dam Integrated CCS Project will capture up to 90 percent of carbon dioxide (CO2) emissions and store them permanently underground. In Canada, the current regulation is that coal-fired plants built before 1975 are required to close by 2020, while units built after 1975 must close by 2030, unless they can emit less than 420 tonnes of CO2 per gigawatt-hour. The Boundary Dam CCS system will allow Unit 3 to continue operations by producing 140 tonnes of CO2 per megawatt-hour, and will allow for the continued use of coal in the province of Saskatchewan. The province’s power needs are expected to increase by close to 30 percent in the next 20 years, and demand will double by 2050.

The construction of this project spanned 41 months through three Saskatchewan winters with temperatures below -40 degrees Celsius (-40 degrees Fahrenheit). More than 60 different contracted companies and several hundred contractors were on the project site at any given time, with 1,700 workers on site at the peak of construction. SaskPower had to deal with labor shortages due to the province’s booming economy, asbestos removal, and bringing a 50-year-old unit to common standards.

Main contractors: Shell Cansolv, SNC Lavalin, The Babcock & Wilcox Co., Mitsubishi Hitachi Power Systems Canada, and Graham Industrial.


Runner up: Columbia Energy Center AQC Retrofit, 1,025 MW in Pardeeville, Wisc., owned by Wisconsin Power & Light

Wisconsin Power and Light Co., a subsidiary of Alliant Energy Corp., selected Black & Veatch (B&V) to be the engineering, procurement and construction (EPC) firm for an air quality control retrofit at the Columbia Energy Center’s existing 512-MW and 511-MW subcritical coal-fired units. The project was completed on time with an accelerated schedule and at a price significantly under budget. Costs were controlled using an open-to-closed-book EPC process and through innovative construction techniques.

B&V used integrated phase planning (IPP), which begins with development of an integrated baseline schedule. Work activities that required integration between subcontractors were identified, and subcontractors involved met to develop advanced work plans. Resulting IPP schedules were monitored. Babcock & Wilcox used extensive ground fabrication to move work activities from congested locations high above the ground to more open areas near ground level. Cables were stored and cut offsite and transported to the site as required, minimizing material waste and promoting good planning.

Some wood materials were donated to Habitat for Humanity and to a local farm that rehabilitates abused animals. B&V workers also provided gifts to needy children, donated more than $20,000 to a community splash pad, collected 700 lbs. of food for a local food pantry and participated in the Ride/Walk for Veterans and the International Coastal Cleanup.

The construction area was surrounded by the existing power plant, cooling lake and a sealed ash landfill. State regulations limited activities on top of the ash landfill, which was resolved by removing soil from the hill to create a flat site at the same elevation as the plant, and using the removed soil to create an additional protective layer over the sealed landfill. An application for a Certificate of Authority (COA) for the new facilities was filed April 2, 2009, but there were uncertainties related to future environmental regulations, the need to maintain a reliable generating asset in central Wisconsin and the need to minimize project capital cost in order to reduce rate-payer impacts. The PSC issued the COA on March 11, 2011.

Natural Gas

FPL Riviera Beach Next Generation Clean Energy Center, 1,250 MW in Riviera Beach, Fla.

Florida Power & Light's (FPL) Riviera Beach Next Generation Clean Energy Center was built on the same site where a 1960s-era oil-burning plant was dismantled in 2011. The new plant uses 33 percent less fuel per megawatt-hour than its predecessor and is capable of producing more than 1,250 MW of electricity without using any additional water or land while significantly reducing emissions. The plant utilizes a combined-cycle natural gas technology that reuses exhaust heat given off from the gas turbine to create steam and provide additional energy.

The new Riviera Beach facility produces approximately half of the CO2 emissions and more than 90 percent fewer air emissions of the oil plant it replaces. In addition, the plant’s administration building was built to the U.S. Green Building Council’s Leadership in Energy and Environmental Design (LEED) certification standards and includes rooftop solar panels, which help reduce the plant’s auxiliary load requirements.

In the plant’s first full year of operations, it is expected to generate approximately $25 million in new tax revenue to benefit local residents. Over its 30-year operational lifetime, the plant is expected to generate approximately $350 million in tax revenue and provide FPL customers with hundreds of millions of dollars in fuel and other savings. A manatee education center will be built next to the plant and is due for completion in 2015. The center will include meeting rooms, educational exhibits, a boardwalk and a manatee viewing area.

The project was completed two months ahead of schedule and on budget despite requiring approximately 25 acres of remote laydown yards located in four different and remote locations. The plant was constructed in an existing residential/industrial area, with homes within 100 yards of the plant’s perimeter. Construction schedules and processes were modified to meet noise ordinances. Power piping code requires high-pressure pipe welds to be examined by x-ray to ensure integrity. Since the plant was constructed near the port, x-ray work could only be completed between 10 p.m. and 5 a.m. so the x-ray equipment would not set off the port’s radiation monitors. To minimize impact on the construction schedule, significant work process changes were implemented to overcome the examination parameter.

Main contractors: Siemens Energy (NYSE: SI) and Zachry Group


Runner up: Kansai Himeji No. 2 Thermal Power Station, Kansai Electric, 2,919 MW in Himeji City, Japan

Kansai Electric Himeji No. 2 Thermal Power Station is a state-of-the-art combined cycle plant composed of six single-shaft blocks rated for a total of 2,919 MW. This modern plant replaces Kansai Electric’s largest thermal power station rated at 2,550 MW that had been in operations since 1963. The first four units were commissioned two to four months ahead of schedule. The plant uses bottoming cycle technology and several existing portions of the plant such as cooling water intake and seawater desalination were effectively refurbished.

Each block uses one Mitsubishi Hitachi Power Systems’ M501J gas turbine rigidly coupled to a single reheat SRT-50 steam turbine, resulting in a combined cycle efficiency of over 60 percent. The M501J gas turbine features steam cooled combustors and operates at the turbine inlet temperature of 1,600 degrees Celsius (2,912 degrees Fahrenheit). The pressure ratio is 23:1 and it incorporates advanced TBC and advanced cooling technology developed for the 1,700 degrees C (3,092 degrees Fahrenheit) Japanese National Project. The SRT 50 steam turbine operates with a condenser vacuum of 96.3 kPa and features 50-inch steel blades that result in large annular area for high efficiency and large capacity. The large-capacity single-casing reheat turbines feature other advanced technologies such as high-efficiency reaction blades, welded rotor, advanced seals and high performance bearings. The new power plant emits 30 percent less CO2 and 85 percent NOX reduction compared to the original plant.

The original plan included decommissioning units 5 and 6 prior to the installation of the new units 4-6, but due to the critical electricity supply caused by the Great East Japan Earthquake in 2011, the existing units 5 and 6 remained in operation during construction. Because of that, the parallel operation and construction imposed close communication and cooperation between the involved teams, including mechanical, electrical, I&C and others to prevent unintended interference that could either affect the operation of the existing units or delay the progress of construction. High bearing capacity piles were used to strengthen the support of the bearing layer and vibration measurements were performed during construction to avoid vibration trips of existing units.

The city of Himeji is known for the UNESCO world heritage Japanese castle, so special attention was placed on the architecture of the plant in order to minimize the visual effect of the new plant on the landscape of the city. Ivory and beige were selected as base colors for the façade considering the harmony with the outer wall of Himeji castle, and green paint was selected for the HRSGs and transformers to reflect the image of the nature of Harima plain field surrounded by greenery.

Main contractor: Mitsubishi Hitachi Power Systems Ltd.


Bushehr Nuclear Power Plant, 915 MW, Iran, operated by Rosenergoatom

Iran’s first nuclear power plant began operations in September 2013. Rosatom unit Atomstroyexport built the VVER-1000 Unit 1 using structures and equipment already in place at Bushehr. The Iranian and Russian governments signed an agreement in August 1992 to build and operate a two-unit nuclear plant in Iran.

All of the work at the plant was done under International Atomic Energy Association (IAEA) safeguards and operations are also under IAEA safeguards. All of the main reactor components were built under a construction contract with Atomstroyexport based on the V-320 design, but designated at a V-446 to include adaptations to the Siemens parts and high seismic rating.

The plant faced a series of delays and was almost abandoned in 2007. By the end of January 2008, Atomstroyexport had delivered the 163 fuel assemblies plus 17 reserve ones for the initial core of Bushehr totaling 82 tonnes of nuclear fuel. The reactor was due to start up in February 2011, and fuel had been loaded by the beginning of December. However, while it was starting up in February, a 1970s-era pump failed and possibly shed metal particles into the primary cooling system. The fuel was removed, cleaned and replaced, and the reactor started up on May 8, 2011. It was grid connected in September 2011 and was expected to enter commercial operation in April 2012, then May 2013. It finally reached commercial operation in September 2013.

After the unit was connected to the grid in September 2011, Rosatom said that only a national company could operate the nuclear plant, according to Iranian legislation. In May 2012, the first deputy director generation of Rosenergoatom said that all operations related to the reactor equipment control and operations were being carried out by Russian specialists.

The anticipated 7 TWh/yr from the Bushehr reactor frees up about 11 million barrels of oil, or 1.8 million cubic metres of gas per year, which can be exported for hard currency. In 2013, Iran’s Energy Minister said that it saved some $2 billion per year in oil and gas.

Contractor: Atomstroyexport


Runner up: The 1,000-MW Kudankulam 1 nuclear power plant, operated by the Nuclear Power Corporation of India Ltd., Tamil Nadu, India

Construction on the Kudankulam 1 nuclear power plant in India began in March 2002. Russia’s Atomstroyexport supplied two VVER-1000 reactors under a Russian-financed 122.9 billion rubles ($3 billion) contract. A long-term credit facility covers about half the cost of the plant. The AES-92 units at Kudankulam in Tamil Nadu state have been built by the Nuclear Power Corporation of India Ltd. (NPCIL) and also commissioned and operated by NPCIL under IAEA safeguards. The turbines are made by Leningrad Metal Works.

Russia is supplying all the enriched fuel through the life of the plant, though India will reprocess it, keep the plutonium and send the rest back to Russia. The first unit was due to start supplying power in March 2008. In the latter part of 2011 and into 2012, completion and fuel loading was delayed by public protests, but in March 2012 the state government approved the plant's commissioning and said it would deal with any obstruction. Fuel loading was in September, and Unit 1 started up in mid-July 2013. Unit 1 was connected to the grid in October 2013 and reached commercial operation in August 2014. Each unit will be 917 MWe net, and Unit 2 is expected to reach operations in late 2014.

While the first core load of fuel was delivered early in 2008 there have been delays in supply of some equipment and documentation. Control system documentation was delivered late, and when reviewed by NPCIL it showed the design basis flood level is 5.44 meters, and the turbine hall floor is 8.1 meters above mean sea level. The 2004 tsunami wall was under 3 meters.

A small desalination plant is associated with the Kudankulam plant to produce 426 m3 per hour for it using four-stage multi-vacuum compression technology. Another reverse osmosis plant is in operation to supply local township needs.

Contractors: Atomstroyexport , Leningrad Metal Works


Ivanpah Solar Electric Generating System

After years of development and months of testing, the 392-MW concentrating solar power (CSP) behemoth known as Ivanpah was officially commissioned in January 2014. It was the recipient of a $168 million loan from Google and a $1.3 billion loan guarantee from the U.S. Department of Energy (DOE), which has proven to be a profitable renewable energy program thanks in part to the success of Ivanpah.

Located in California’s Mojave Desert, Ivanpah is a shining beacon of renewable energy progress, as evidenced by the fanfare at its dedication. Esteemed guests included representatives from not only its creators at Bechtel, NRG Energy and Brightsource and financiers from the DOE and Google, but also Grammy-nominated rock band The Fray, which used the project as a backdrop for their album cover and recent music video.

Ivanpah uses 173,500 heliostat mirrors that focus sunlight on several centralized power towers.  The towers generate steam to drive specially adapted 123-MW Siemens steam turbines — the largest fully solar-powered turbines in the world. In order to reduce its environmental impact, Ivanpah also utilizes dry cooling to condense the steam back into water, which minimizes water consumption to just 0.03 gallons of water per kW of electricity generated.

Shortly after commissioning, reports emerged depicting bird deaths due to “solar flux” that occurs when the mirrors reflect light to the towers, which can create a hazardous super-heated area. However, recent reports have found that Ivanpah’s impact is minimal, and the project team is undergoing efforts to further reduce environmental hazards. For example, on-site staffing includes several biologists that monitor and respond to the needs of animal and plant life.

“Clean tech innovations such as Ivanpah are critical to establishing America’s leadership in large-scale, clean-energy technology that will keep our economy globally competitive over the next several decades,” said Tom Doyle, president, NRG Solar. “We see Ivanpah changing the energy landscape by proving that utility-scale solar is not only possible, but incredibly beneficial to both the economy and in how we produce and consume energy.”

Ivanpah has led to more than 2,100 construction jobs and 86 permanent positions for the local community, with total employee wages estimated to reach $650 million.

2014 Articles

Harvard Law School professor pays Clean Power Plan is unconstitutional


Laurence H. Tribe, professor of constitutional law at Harvard University and former mentor to Barack Obama, said in an article last week that the EPA’s Clean Power Plan is unconstitutional.

3 SKorea workers die at nuke plant construction site


SEOUL, South Korea (AP) — Three South Korean workers died Friday after apparently inhaling toxic gas at a construction site for a nuclear plant being built by South Korea's monopoly nuclear power company, which has come un...

UMaine in business of certifying turbine blades


ORONO, Maine (AP) — The University of Maine has tested its largest wind turbine blade to date. UMaine's Advanced Structures and Composites Center completed static strength testing this month of a 184-foot-long wind turbine...

Mergers, EPA carbon plan generated much attention during 2014


Mergers, the Environmental Protection Agency (EPA) Clean Power Plan, cheap natural gas and the polar vortex were among the most noteworthy generation stories of 2014.

Developer opens Ohio review for 800-MW, gas-fired project


Clean Energy Future-Lordstown LLC plans an 800-MW, gas-fired power project, and on Dec. 24 applied with the Ohio Power Siting Board for certain routine waivers it needs before filing a full siting application for this proj...

New England utility exec named to Vermont PSB


A woman who worked for Vermont's Department of Public Service for 17 years is going to become the next member of the utility-regulating Public Service Board. The appointment of Sarah Hofmann was announced Monday by Gov. Pe...

Brown picks aide to lead troubled California utility board


Gov. Jerry Brown named a former adviser on Tuesday to be the next head of California's troubled utilities commission, replacing a regulatory chief accused of back-channel dealings with utilities. Michael Picker, a former a...

Washington state carbon emissions dropped in 2011


Greenhouse gas emissions in Washington state dropped by about 4.6 percent between 2010 and 2011, led by reductions in emissions from the electricity sector, according to the latest figures released by the state. The latest...

Group wants state regulators recused from PNM case


State regulators in less than two weeks are to begin deliberating a proposal that calls for shutting down part of an aging coal-fired power plant in northwestern New Mexico that serves more than 2 million customers in the ...

Vermont Yankee plant prepares to shut down


The Vermont Yankee nuclear plant is getting ready to shut down. Its owner, Entergy Corp., says it is closing the plant for economic reasons. The plant in Vernon is expected to disconnect from the regional power grid Monday.

PSEG Solar to acquire Maryland solar project from juwi


PSEG Solar Source will acquire a 12.9-MW solar energy facility near Waldorf, Maryland from juwi solar (JSI). The PSEG Waldorf Solar Energy Center will increase the capacity of PSEG Solar Source's portfolio to 123-MW.

PG&E discloses more emails with state regulators


California's largest power utility released a dozen more emails Monday that it said showed improper back-channel discussions between the utility and top state regulators.

Indianapolis airport solar farm expansion completed


Contractors have finished bringing online dozens of acres of solar panels at Indianapolis International Airport, solidifying its status as the home of the nation's largest airport-based solar farm.

French power company to pay $772M in bribery case


A French power and transportation company has agreed to pay $772 million to resolve allegations that it bribed high-ranking foreign government officials for lucrative projects, the Justice Department said Monday.

Nebraska nuclear plant back online after short outage


The Fort Calhoun nuclear power plant is back online less than a week after its main generator unexpectedly shut down as a precaution.

Ameren Missouri plans $135M in energy efficiency


Missouri's largest electric company said Monday that it plans to invest $135 million in energy efficiency programs for customers over a three-year period.

TEPCO completes nuclear fuel assemblies removal from Fukushima 4


Tokyo Electric Power Co. (TEPCO) said it has safely removed the fuel assemblies from the most damaged nuclear reactor at the Fukushima Daiichi nuclear power plant.

B&W Vølund to build waste-to-energy power plant in Scotland


In a consortium with Interserve, Babcock & Wilcox Co.’s (B&W, NYSE:BWC) subsidiary, Babcock & Wilcox Vølund A/S (B&W Vølund), will engineer, procure and construct (EPC) a waste-to-energy (WTE) power plant f...

SKorea holds N-plant drills against cyber threats


South Korea's monopoly nuclear power company said it began drills Monday against possible cyberattacks after online threats of attack against its plants.

PSC approves solar power project


The Public Service Commission has approved solar power project planned by Kentucky Utilities and Louisville Gas and Electric in Mercer County.

Did You Like this Article? Get All the Energy Industry News Delivered to Your Inbox

Subscribe to an email newsletter today at no cost and receive the latest news and information.

 Subscribe Now


Logistics Risk Management in the Transformer Industry

Transformers often are shipped thousands of miles, involving multiple handoffs,and more than a do...

Secrets of Barco UniSee Mount Revealed

Last year Barco introduced UniSee, a revolutionary large-scale visualization platform designed to...

The Time is Right for Optimum Reliability: Capital-Intensive Industries and Asset Performance Management

Imagine a plant that is no longer at risk of a random shutdown. Imagine not worrying about losing...

Going Digital: The New Normal in Oil & Gas

In this whitepaper you will learn how Keystone Engineering, ONGC, and Saipem are using software t...